The Triviality Problem for Profinite Completions
نویسنده
چکیده
We prove that there is no algorithm that can determine whether or not a finitely presented group has a non-trivial finite quotient; indeed, it remains undecidable among the fundamental groups of compact, non-positively curved square complexes. We deduce that many other properties of groups are undecidable. For hyperbolic groups, there cannot exist algorithms to determine largeness, the existence of a linear representation with infinite image (over any infinite field), or the rank of the profinite completion.
منابع مشابه
Profinite completions of some groups acting on trees
We investigate the profinite completions of a certain family of groups acting on trees. It turns out that for some of the groups considered, the completions coincide with the closures of the groups in the full group of tree automorphisms. However, we introduce an infinite series of groups for which that is not so, and describe the kernels of natural homomorphisms of the profinite completions on...
متن کاملProfinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملComparison of MacNeille, Canonical, and Profinite Completions
Using duality theory, we give necessary and sufficient conditions for the MacNeille, canonical, and profinite completions of distributive lattices, Heyting algebras, and Boolean algebras to be isomorphic.
متن کاملThe Schur Multiplier, Profinite Completions and Decidability
We fix a finitely presented group Q and consider short exact sequences 1 → N → Γ → Q → 1 with Γ finitely generated. The inclusion N ↪→ Γ induces a morphism of profinite completions N̂ → Γ̂. We prove that this is an isomorphism for all N and Γ if and only if Q is super-perfect and has no proper subgroups of finite index. We prove that there is no algorithm that, given a finitely presented, residua...
متن کاملThe True Prosoluble Completion of A
The true prosoluble completion PS(Γ) of a group Γ is the inverse limit of the projective system of soluble quotients of Γ. Our purpose is to describe examples and to point out some natural open problems. We answer the analogue of a question of Grothendieck for profinite completions by providing examples of pairs of non–isomorphic residually soluble groups with isomorphic true prosoluble complet...
متن کامل